This article provides a comprehensive guide to building robust regression models using Python's Scikit-learn library. It delves into the core concepts of regression, exploring various algorithms and their applications. By leveraging machine learning techniques, readers will gain insights into effective model selection, training, and evaluation. The article emphasizes practical implementation, providing code examples and real-world use cases. This resource empowers you to harness the power of regression modeling for accurate predictions and informed decision-making. In this study, the performance of various regression models was systematically assessed using key evaluation metrics, specifically Mean Squared Error (MSE) and R² score. The analysis identified the Decision Tree Regressor and Gradient Boosting Regressor as exhibiting superior predictive accuracy, characterized by low MSE and high R² values. These models demonstrated a robust fit to the dataset, positioning them as optimal choices for prediction tasks. Nonetheless, the selection of the final model should also consider factors such as interpretability, computational demands, and application-specific requirements. This thorough evaluation process aims to ensure the adoption of the most effective and suitable model, thereby improving the reliability and precision of predictions.

Keywords:

Optimization of Regression Models Using Machine Learning: A Comprehensive Study with Scikit-learn

References :


[1] Gauss, C. F. (1809). Theoria motus corporum coelestium.
[2] Draper, N. R., & Smith, H. (1981). Applied regression analysis. Wiley.
[3] Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1), 55-67.
[4] Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58(1), 267-288.
[5] Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Wadsworth International Group.
[6] Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.
[7] Vapnik, V., Schölkopf, B., & Smola, A. J. (1997). Support vector regression function estimation. Advances in neural information processing systems, 9, 281-287.
[8] Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of statistics, 29(5), 1189-1232.
[9] Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: data mining, inference, and prediction. Springer Science & Business Media.
[10] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of machine learning research, 12(Oct), 2825-2830.
[11] LinearRegression: Scikit-learn Documentation on Linear Regression. Available at: Scikit-learn
[12] Ridge: Scikit-learn Documentation on Ridge Regression. Available at: Scikit-learn Hoerl, A. E., & Kennard, R. W. (1970). "Ridge Regression: Biased Estimation for Nonorthogonal Problems." Technometrics, 12(1), 55-67.
[13] Lasso: Scikit-learn Documentation on Lasso Regression. Available at: Scikit-learn Tibshirani, R. (1996). "Regression Shrinkage and Selection via the Lasso." Journal of the Royal Statistical Society: Series B (Methodological), 58(1), 267-288.
[14] ElasticNet: Scikit-learn Documentation on ElasticNet Regression. Available at: Scikit-learn Zou, H., & Hastie, T. (2005). "Regularization and Variable Selection via the Elastic Net." Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2), 301-320.
[15] Lars: Scikit-learn Documentation on Least Angle Regression. Available at: Scikit-learn Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R. (2004). "Least Angle Regression." The Annals of Statistics, 32(2), 407-499.
[16] OrthogonalMatchingPursuit: Scikit-learn Documentation on Orthogonal Matching Pursuit. Available at: Scikit-learn Pati, Y. S., Faster, S. K., & K. S. B. (2004). "Orthogonal Matching Pursuit: A Linear Algebra Based Algorithm for Sparse Approximation." IEEE Transactions on Signal Processing, 51(1), 338-348.
[17] SVR: Scikit-learn Documentation on Support Vector Regression. Available at: Scikit-learn Vapnik, V. (1995). The Nature of Statistical Learning Theory. Springer.
[18] DecisionTreeRegressor: Scikit-learn Documentation on Decision Tree Regressor. Available at: Scikit-learn Breiman, L., Friedman, J., Olshen, R. A., & Stone, C. J. (1986). Classification and Regression Trees. CRC Press.
[19] RandomForestRegressor: Scikit-learn Documentation on Random Forest Regressor. Available at: Scikit-learn Breiman, L. (2001). "Random Forests." Machine Learning, 45(1), 5-32.
[20] GradientBoostingRegressor: Scikit-learn Documentation on Gradient Boosting Regressor. Available at: Scikit-learn Friedman, J. H. (2001). "Greedy Function Approximation: A Gradient Boosting Machine." The Annals of Statistics, 29(5), 1189-1232.
[21] KNeighborsRegressor: Scikit-learn Documentation on K-Nearest Neighbors Regressor. Available at: Scikit-learn Cover, T., & Hart, P. (1967). "Nearest Neighbor Pattern Classification." IEEE Transactions on Information Theory, 13(1), 21-27.
[22] MLPRegressor: Scikit-learn Documentation on Multi-layer Perceptron Regressor. Available at: Scikit-learn Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). "Learning Representations by Back-Propagating Errors." Nature, 323(6088), 533-536.
[23] GaussianProcessRegressor: Scikit-learn Documentation on Gaussian Process Regressor. Available at: Scikit-learn Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian Processes for Machine Learning. MIT Press.
[24] Draper, N. R., & Smith, H. (1981). Applied regression analysis. Wiley.
[25] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Duchesnay, E. (2011). "Scikit-learn: Machine learning in Python." Journal of machine learning research, 12(Oct), 2825-2830.
[26] Tibshirani, R. (1996). "Regression Shrinkage and Selection via the Lasso." Journal of the Royal Statistical Society: Series B (Methodological), 58(1), 267-288.
[27] Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: data mining, inference, and prediction. Springer Science & Business Media.
[28] Zou, H., & Hastie, T. (2005). "Regularization and Variable Selection via the Elastic Net." Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2), 301-320.
[29] Friedman, J. H. (2001). "Greedy Function Approximation: A Gradient Boosting Machine." The Annals of Statistics, 29(5), 1189-1232.
[30] Breiman, L. (2001). "Random Forests." Machine Learning, 45(1), 5-32.
[31] Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R. (2004). "Least Angle Regression." The Annals of Statistics, 32(2), 407-499.
[32] Hoerl, A. E., & Kennard, R. W. (1970). "Ridge Regression: Biased Estimation for Nonorthogonal Problems." Technometrics, 12(1), 55-67.
[33] Vapnik, V. (1995). The Nature of Statistical Learning Theory. Springer.
[34] Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and Regression Trees. Wadsworth International Group.
[35] Breiman, L. (2001). "Random Forests." Machine Learning, 45(1), 5-32.
[36] Friedman, J. H. (2001). "Greedy Function Approximation: A Gradient Boosting Machine." The Annals of Statistics, 29(5), 1189-1232.
[37] Zou, H., & Hastie, T. (2005). "Regularization and Variable Selection via the Elastic Net." Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2), 301-320.
[38] Tibshirani, R. (1996). "Regression Shrinkage and Selection via the Lasso." Journal of the Royal Statistical Society: Series B (Methodological), 58(1), 267-288.
[39] Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: data mining, inference, and prediction. Springer Science & Business Media.
[40] Draper, N. R., & Smith, H. (1981). Applied regression analysis. Wiley.
[41] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Duchesnay, E. (2011). "Scikit-learn: Machine learning in Python." Journal of machine learning research, 12(Oct), 2825-2830.
[42] Zou, H., & Hastie, T. (2005). "Regularization and Variable Selection via the Elastic Net." Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2), 301-320.

Citation

Mohammed Salama(2024),Optimization of Regression Models Using Machine Learning: A Comprehensive Study with Scikit-learn. IUSRJ International Uni-Scientific Research Journal (5)(16),119-129. https://doi.org/10.59271/s45500.024.0624.16

Call for Paper

iusrj : Optimization of Regression Models Using Machine Learning: A Comprehensive Study with Scikit-learn| IUSRJ

We are going to launch a new Volume, 15th of next Month of peer-reviewed OpenAcess journal publishing original research articles. IUSRJs' publish innovative papers, reviews, mini-reviews, rapid communications and scheduled to monthly. For this purpose, we would like to ask you to contribute your excellent papers in IUSRJs'. Your comments will help us improve the quality and content of the journals. The journals accepts Review Articles, Original Articles and Short Communications. Brief Report, Books Review, Thesis Important Info.: Last Date of article submission: 15th of Every month Acceptance Notification: within 4-5 weeks publication online: within 72 hours after submit all necessary document for publication Submit your valuable work: Submit Now Submit your article through : [email protected]

Contact Us

[email protected]