
A. Adel. \ International Uni-Scientific Research Journal Vol.4 (2023) 61-76

https://www.iusrj.org

Introduction

Visually impaired individuals face significant challenges in

navigating and accessing the environment around them. To

address this issue, we present the development of a smart

robot assistant utilizing advanced Artificial Intelligence (AI),

Machine Learning (ML), and Internet of Things (IoT)

technologies to enhance accessibility and independence for

visually impaired individuals. This paper aims to highlight

the potential of smart robots in addressing the unique needs

and challenges faced by this population.

The smart robot assistant is designed to provide a range of

features such as voice recognition, obstacle detection, and

navigation, utilizing various sensors including cameras,

microphones, and distance sensors. Raspberry Pi 4 and Nvidia

RTX 3050 ti hardware are used to process the data, while

Python version 3.9.16 is utilized for software programming,

integrating important libraries such as Tensorflow, OpenCV,

and PyAudio.

Unlike traditional smart home devices aimed at improving

convenience and efficiency, the smart robot assistant's primary

goal is to enhance accessibility and independence for visually

www.iusrj.org

Circuit and Systems
Enhancing Accessibility and Independence of Visually Impaired Individuals through AI, ML and IoT:

The Development of a Smart Robot Assistant.

Ahmed Adel, Ahmed Goda, Ahmed Essam, Mostafa Sadek, Mohammed K. Salama

Article Info

Abstract

Article history:

Received: 01- 06 -2023

Accepted:13 – 06- 2023

doai202306012301

Available

Vol. 4 (11) 61-76

16th June 2023

This paper presents the development of a smart robot assistant designed to enhance

accessibility and independence for visually impaired individuals by leveraging

Artificial Intelligence (AI), Machine Learning (ML), and Internet of Things (IoT)

technologies. The system incorporates various sensors, including cameras,

microphones, and distance sensors, with Raspberry Pi 4 and Nvidia RTX 3050 ti

hardware to provide features such as voice recognition, obstacle detection, and

navigation.

The software is programmed using Python version 3.9.16 and utilizes important

libraries such as Tensorflow, OpenCV, and PyAudio. Our study shows that the smart

robot assistant can offer numerous benefits, including increased mobility, safety, and

independence, by recognizing and responding to voice commands, identifying

obstacles and avoiding collisions, and providing audio feedback on its location and

surroundings.

However, successful adoption requires addressing several challenges, including

improving the accuracy and reliability of obstacle detection, ensuring privacy and

security, and reducing costs. The propose strategies to overcome these challenges,

such as leveraging AI and ML technologies, collaborating with stakeholders, and

promoting regulatory frameworks.

In conclusion, this paper highlights the potential of AI, ML, and IoT technologies in

developing smart robots to enhance the accessibility and independence of visually

impaired individuals. By addressing the aforementioned challenges and

incorporating user feedback, these systems have the potential to significantly

improve the quality of life for this population.

© 2023 IUSRJ. OpenAccess

Keywords:

smart robot, visually impaired

AI, ML, and IoT

Corresponding author

Ahmed Adel, Ahmed Goda, Ahmed Essam,

Mostafa Sadek and MK Salama

https://www.iusrj.org/
http://www.iusrj.org/
http://www.iusrj.org/
http://www.iusrj.org/

A. Adel. \ International Uni-Scientific Research Journal Vol.4 (2023) 61-67

www.iusrj.org

62

impaired individuals. By leveraging the aforementioned

technologies, it is capable of recognizing and responding to

voice commands, identifying obstacles and avoiding

collisions, and providing audio feedback on its location and

surroundings.

The development of a smart robot assistant for Visually

Impaired highlights the potential of AI, ML, and IoT

technologies in enhancing accessibility and independence for

visually impaired individuals. These smart robots can

significantly improve the quality of life for vulnerable

populations by addressing their unique needs and challenges.

Smart robots for smart homes serve as a centralized platform

that allows homeowners to control and manage various smart

devices, including lighting, heating/cooling systems, security

systems, appliances, and more. Using a user-friendly interface,

such as a mobile app or voice control, smart robots eliminate

the need for manual device control, making it easier and more

convenient for homeowners to manage their smart home.

Automating routine tasks is a key benefit of smart robots for

smart homes. The smart robot can turn off lights, adjust

temperature, and set the security system based on the

homeowner's behavior. This automation streamlines the smart

home experience, freeing up homeowners' time and energy for

other activities.

Smart robots for smart homes also play an essential role in

monitoring the home environment for potential security

threats, such as intrusions or fires. When a potential threat is

detected, the smart robot can alert the appropriate authorities

or the homeowner, providing a layer of security and peace of

mind. This feature is especially useful for homeowners who

are frequently away from home, allowing them to monitor

their home environment even when they are not there.

The development of a smart robot assistant using AI, ML, and

IoT technologies has the potential to enhance accessibility and

independence for visually impaired individuals. In addition to

security, smart robots for smart homes can improve the

efficiency of smart devices by monitoring their performance

and making adjustments to ensure optimal functioning. They

also have the ability to learn and adapt to the homeowner's

habits and preferences over time, resulting in a more

personalized and efficient smart home experience.

Smart robots for smart homes can be seamlessly integrated

with other smart home technologies, such as smart assistants,

providing homeowners with multiple options for controlling

their smart devices. This integration allows for a convenient,

efficient, and secure living experience.

Problem statement

Visually impaired individuals face numerous challenges in

their daily lives. They may struggle with mobility and

navigation, which can limit their independence and make it

difficult to complete tasks such as shopping and cooking.

Communicating with others can also be a challenge, and they

may have trouble identifying objects and people in their

surroundings. Accessing educational resources and

opportunities is another hurdle, with limited resources and

tools available to help them study and learn effectively.

Ultimately, these challenges can impact their overall quality of

life, making it essential to find innovative solutions that

address their needs and enhance their independence and

wellbeing.

Navigation: The smart robot can provide assistance to visually

impaired individuals in navigating their environment, both

indoors and outdoors. It can guide them through unfamiliar

places, alert them of obstacles, and help them avoid potential

hazards.

Object Recognition: Visually impaired individuals often

struggle with identifying objects in their surroundings. A smart

robot equipped with object recognition technology can help

identify items such as household objects, food items, and even

people to aid in social interactions.

Communication: Communication is a challenge for many

visually impaired individuals. A smart robot capable of voice

commands and responses can assist in making phone calls,

sending messages, and accessing information online. The

robot can also serve as a companion and engage in

conversations with the user.

Independence: The smart robot can help visually impaired

individuals become more independent by providing them with

the necessary assistance to complete tasks on their own. This

includes shopping, cooking, and managing daily routines.

Safety: The smart robot can enhance the safety of visually

impaired individuals by monitoring their environment and

alerting them to potential hazards such as open windows or

doors. It can also alert emergency services in case of an

accident or illness.

Education: The smart robot can help visually impaired

individuals in their educational pursuits by providing them

with access to digital books, documents, and other learning

materials. The robot can also assist in note-taking and

organizing study materials.

Assistive Technology: The smart robot can be integrated with

assistive technology such as screen readers, magnifiers, and

braille displays, to make it easier for visually impaired

individuals to study and learn.

Tutoring: The smart robot can serve as a virtual tutor,

providing personalized assistance to visually impaired

students in various subjects. The robot can adapt to the

student's learning style and pace, making studying more

efficient and effective.

Accessibility: The smart robot can help visually impaired

individuals access educational resources that may not be

http://www.iusrj.org/

A. Adel. \ International Uni-Scientific Research Journal Vol.4 (2023) 61-67

www.iusrj.org

63

readily available to them due to accessibility issues. This

includes online courses, workshops, and conferences.

Overall, a smart robot for visually impaired individuals has the

potential to improve their quality of life by addressing several

challenges they face on a daily basis, including mobility,

communication, and education.

Methodology

The concept of a methodology refers to a structured and

standardized approach to problem-solving that helps

individuals and teams plan, organize, and execute projects and

tasks efficiently. Methodologies are utilized in various fields,

such as software development, project management, business,

and education, and can be tailored to meet the specific needs

of an organization or project. The methodology for a smart

robot for visual impaired individuals is divided into two parts

- hardware and software - with the aim of addressing their

mobility, communication, education, and safety challenges.

1. Hardware

1) Raspberry pi 4(8 GB).

2) Raspberry Came V2 (8MP).

3) Aluminum Metal Case with Dual Fans for

Raspberry Pi.

4) Touch screen display.

5) DC Booster Converter

6) Light sensor.

7) Gas Sensor.

8) Smoke Sensor.

9) Ultrasonic.

10) L298N Motor Driver.

11) Motors.

12) LED 10W.

13) Buzzer 5V (TMB12A05).

14) Speaker 5W.

15) Heatsink.

16) Power supply 5V & 3A.

17) Battery Li-ion Batteries 18650.

18) Lithium Battery Plate.

19) Switch.

20) Water sensor.

2. Software

1) Python.

2) Dart.

3) AI, ML, DL.

4) Object detection.

5) OCR.

6) Text to speech & Speech-to-text.

7) Voice assistance.

8) Face recognition.

9) Linux software.

10) Raspberry OS.

11) Tensorflow.

12) Flutter.

13) Android studio.

14) YOLO.

15) RTOS.

16) Blender 3D.

Design Implementation:

This section describes the process of connecting the various

components of the circuit. Initially, the design and placement

of each component in the circuit were determined, as depicted

in Fig 1. Next, the circuit was connected without regard to the

robot's design or structure to verify its proper functioning, as

shown in Fig 2. Finally, a comprehensive circuit diagram was

created, illustrating all the components and their

interconnections, as depicted in Fig 3. This rigorous approach

ensured that the circuit was properly designed and connected,

laying the foundation for subsequent stages of the project.

Fig.1

http://www.iusrj.org/

A. Adel. \ International Uni-Scientific Research Journal Vol.4 (2023) 61-67

www.iusrj.org

64

Problem solving:

Fig. 2

Fig (3)

Raspberry system:

The operating system utilized for the project was Ubuntu

Desktop 22.04.2 LTS, which is a long-term support release of

the Ubuntu operating system. This version was specifically

chosen due to its stability and extended support period of up to

five years. It is designed for use with desktop or laptop

computers and features the Ubuntu desktop environment

alongside pre-installed software packages for everyday

activities such as web browsing, email, productivity tools,

media playback, and more.

Canonical, the company behind Ubuntu, will provide regular

maintenance and security updates for this LTS release

throughout its support period, ensuring that users can rely on a

stable and secure operating system for their desktop computing

needs. The choice of Ubuntu Desktop 22.04.2 LTS serves as a

reliable foundation for the project's development and

implementation.

Object detection

The proposed design incorporates object detection

technology in the robot to enable it to identify objects,

people, or animals in its vicinity. This feature ensures a safe

environment for users and provides assistance to individuals

with disabilities or those performing daily tasks at home.

To implement object detection, the design requires several

components. Firstly, YOLO version 8 is used to collect data

for identifying objects. Once the training is complete, the

resulting training file is utilized in a Python file to obtain the

desired output.

The Python code used for this purpose must be adequately

prepared. The initial step involves defining the relevant

libraries utilized in the code. This ensures that the code can

access the necessary tools required for proper execution.

Once the offices are defined, it is essential to determine the

type of version used in the training process. In this case, our

proposed design utilizes YOLOv8 for this purpose. YOLOv8

is an advanced version of the You Only Look Once (YOLO)

algorithm that utilizes deep learning techniques for object

detection and recognition. This version offers improvements

in accuracy and speed, enabling quicker and more precise

import cv2 # import

OpenCV library for computer vision tasks

import argparse # import

argparse to parse command-line arguments

import pyttsx3 # import

pyttsx3 library for text-to-speech conversion

from ultralytics import YOLO # import

YOLOv8 object detection model from

Ultralytics

import supervision as sv # import

supervision module for detection zone and

annotation

import numpy as np

http://www.iusrj.org/

A. Adel. \ International Uni-Scientific Research Journal Vol.4 (2023) 61-67

www.iusrj.org

65

identification of objects in real-time. By utilizing YOLOv8,

the proposed design ensures a reliable and efficient method for

detecting objects in the robot's environment.

Upon establishment of the object detection and recognition

system, it is recommended to include a voice code in the design

that utilizes text-to-speech technology to convert written text

into audible speech. This feature is expected to improve the

user experience for individuals with visual impairments by

providing a more natural and intuitive mode of interaction with

the robot. The voice code is engineered to convert written

commands or responses into synthesized speech output, which

enables users to communicate with the robot via voice

commands. Integration of this feature is projected to yield a

more inclusive and accessible solution for individuals with

disabilities, particularly those who are blind and require a

hands-free means of interacting with the robot.

The main function:

To add a specific box for the person and how to call the

person.

Define a function to parse command-line

arguments

def parse_arguments() ->

argparse.Namespace:

 parser =

argparse.ArgumentParser(description="YOLOv

8 live")

 parser.add_argument ("--webcam-

resolution", default=[1280, 720], nargs=2,

type=int)

 args = parser.parse_args()

 return args

Define a function to convert text to

speech

def speak(text):

 engine = pyttsx3.init()

 engine.say(text)

 engine.runAndWait()

Define the main function

def main():

 args = parse_arguments()

 frame_width, frame_height =

args.webcam_resolution

 cap = cv2.VideoCapture(0)

 cap.set(cv2.CAP_PROP_FRAME_WIDTH,

frame_width)

cap.set(cv2.CAP_PROP_FRAME_HEIGHT,

frame_height)

 model = YOLO("yolov8s.pt")

 # Creating box annotator object to annotate

detections with boxes

 box_annotator = sv.BoxAnnotator(thickness

= 2, text_thickness = 2, text_scale = 1)

 # Initializing variables for counting

detections prev_labels = []

 count = {}

 speak_interval = 30

 frame_count = 0

 while True:

 ret, frame = cap.read()

 result = model(frame,

agnostic_nms=True)[0]

 detections =

sv.Detections.from_yolov8(result)

 curr_labels = []

 for _, confidence, class_id, _ in

detections:

curr_labels.append(f"{model.model.names[cl

ass_id]} {confidence:.2f}")

 count[class_id] = count.get(class_id, 0)

+ 1

 if frame_count % speak_interval == 0:

 for class_id, class_name in

http://www.iusrj.org/

A. Adel. \ International Uni-Scientific Research Journal Vol.4 (2023) 61-67

www.iusrj.org

66

Fig.4

Fig.5

The output of the implemented code, which is illustrated in

Fig. 4 and Fig.5. Once the model was trained and some test

data was entered, it accurately recognized them. Additionally,

experiments were conducted using a mobile phone to identify

nearby devices, as shown in Fig.5 Furthermore, the laptop

camera was utilized to identify people and their boxes with a

high level of accuracy, as depicted in Fig.5.

Table1

The Tables 1 and 2 summarize the equipment used in the

training process in addition to the time required to train a deep

learning model depends on various factors such as the size of

the dataset, the complexity of the model architecture, and the

hardware used for training. The following tables summarize

the time period required to train our computer vision and

natural language processing models:

The variation in the training time of the model is due to the

graphics card, and to get the best performance, The graphics

card that supports CUDA is used to reduce the training time.

Name of

the device

or server

used

Google

Colab

(free)

Laptop

(HP 15

da-

1882-

ne)

ASUS

TUF

GAMINIG

A15

Dell

G15

5511

gaming

Data size 4 GB 4GB 4GB 4GB

CPU Intel

Xeon

CPU

@2.20

GHz

I7

8565u

AMD

Ryzen

4600H

I5

11260H

Number

of cores

1 4 core

– 8

threads

6 Cores -

12

Threads

6 Cores

-12

threads

RAM 13GB 16GB 8GB 16GB

GPU

Name

Nvidia

Tesla

T4

Nvidia

MX

130

Nvidia

GTX1650

Nvidia

RTX

3050 ti

Dedicated

GPU

memory

14.7

GB

2GB 4GB 4GB

GPU

Memory

16GB 4GB 4GB 4GB

Time 37.5

hour

for (50

epoch)

1100

Hour

for (50

epoch)

46 day

for (50

epoch)

550 hour

for (50

epochs)

23 day for

(50

epochs)

21 hour

for (50

epochs)

http://www.iusrj.org/

A. Adel. \ International Uni-Scientific Research Journal Vol.4 (2023) 61-67

www.iusrj.org

67

The following table shows graphics cards that support CUDA:

Table2

Voice assistance:

A Text-to-Speech and Speech-to-Text tool will be utilized as

the intermediary between the robot and visually impaired

user in our system. Initially, the required libraries for this

purpose will be established as in table .:

The main functions that can be performed by the smart robot

will be discussed below.

The initial function is designed to assist the visually impaired

by announcing the current time and date.

Define a function to tell the current time

def tell_time():

 now = datetime.datetime.now()

 time = now.strftime("%I:%M %p")

 print(f"The current time is {time}")

 speak(f"The current time is {time}")

Define a function to tell the current date

def tell_date():

 now = datetime.datetime.now()

 date = now.strftime("%A, %B, %d, %Y")

 print(f"Today is {date}")

 speak(f"Today is {date}")

The upcoming function is designed to aid the visually

impaired by searching for information on Wikipedia and

vocalizing the findings.

def search_wikipedia():

 print("What do you want to search on Wikipedia?")

 speak("What do you want to search on Wikipedia?")

 # Listen for the user's query

 with sr.Microphone() as source:

 audio = r.listen(source)

 try:

 query = r.recognize_google(audio)

 print(f"Searching Wikipedia for {query}")

 speak(f"Searching Wikipedia for {query}")

 # Get a summary of the query from Wikipedia

 summary = wikipedia.summary(query, sentences=2)

 print(f"According to Wikipedia, {summary}")

 speak(f"According to Wikipedia, {summary}")

 except:

 # Handle any errors in speech recognition or

Wikipedia search

 print("Sorry, I could not understand or find your

query.")

 speak("Sorry, I could not understand or find your

query.")

This function is designed to facilitate web browsing on the

internet for individuals who are visually impaired.

def open_website():

 # Starts listening to the user's voice input with the

microphone

 with sr.Microphone() as source:

 print("Please say the website name.")

 speak("Please say the website name.")

 audio = r.listen(source)

 try:

 # Recognizes the user's voice input and opens the

website in a web browser

 website_name = r.recognize_google(audio)

 webbrowser.open("https://" + website_name + ".com")

 speak(website_name + " is opening.")

 except Exception as e:

 # If there is an error, the code informs the user that it

cannot open the website

 speak("I can't open it.")

http://www.iusrj.org/

A. Adel. \ International Uni-Scientific Research Journal Vol.4 (2023) 61-67

www.iusrj.org

68

This function is designed to initiate WhatsApp and transmit a

text message to a recipient.

def whatsapp():

 # Asks the user what message they would like to send

 print("What message would you like to send?")

 speak("What message would you like to send?")

 with sr.Microphone() as source:

 audio = r.listen(source)

 message = r.recognize_google(audio)

 print(message)

 # Asks the user for the phone number of the recipient

 print("What is the phone number of the recipient?")

 speak("What is the phone number of the recipient?")

 with sr.Microphone() as source:

 audio = r.listen(source)

 phone_number = r.recognize_google(audio)

 Whats_number =("+20"+ phone_number)

 print(Whats_number)

 # Sends the WhatsApp message using the pywhatkit

library

 pywhatkit.sendwhatmsg_instantly(Whats_number,

message)

 print("WhatsApp message sent successfully")

 speak("WhatsApp message sent successfully")

The following function makes jokes and speaks it to the

visually impaired user

def joke():

 joke = pyjokes.get_joke()

 print(joke)

 speak(joke + "He he he")

This function is designed to provide a reminder for

something .

def set_reminder():

 # Asks the user what they would like to be reminded about

 with sr.Microphone() as source:

 print("What should I remind you about?")

 speak("What should I remind you about?")

 audio = r.listen(source)

 reminder_text = r.recognize_google(audio)

 print("Ok. I will remind you with :" + reminder_text)

 speak("Ok. I will remind you with :" + reminder_text)

 # Asks the user for the time of the reminder

 print("When should I remind you?")

 speak("When should I remind you?")

 for prompt in ["Set hour: ", "Set minutes: ", "am or pm

"]:

 print(prompt)

 speak(prompt)

 audio = r.listen(source)

try:

 if "hour" in prompt:

 alarm_hour = int(r.recognize_google(audio))

 print(alarm_hour)

 elif "minutes" in prompt:

 alarm_minutes = int(r.recognize_google(audio))

 print(alarm_minutes)

 else:

 am_pm_str =

r.recognize_google(audio).replace("b","p").replace(".",

"").replace("B&M", "pm")

 print(am_pm_str)

 except ValueError:

 # If there is an error, the speaker informs the user

that it cannot understand and prompts them to try again

 speak("Sorry, I didn't understand. Please try

again.")

 break

 # Formats the time of the reminder based on whether it is

AM or PM

 am_pm = am_pm_str.lower()

 print(f"Waiting for time: {alarm_hour}:{alarm_minutes}

{am_pm}")

 speak(f"Waiting for time: {alarm_hour}:{alarm_minutes}

{am_pm}")

 if am_pm == 'pm' and alarm_hour < 12: alarm_hour += 12

 elif alarm_hour == 12 and am_pm == 'am': alarm_hour -=

12

 # Waits until it is time for the reminder to be sent, then

plays an alarm sound and reminds the user of their reminder

 while True:

 now = datetime.datetime.now()

 if now.hour == alarm_hour and now.minute ==

alarm_minutes:

 playsound.playsound('alarm.mp3')

 speak("\nIt's the time!\n "+ reminder_text)

 break

 time.sleep(1)

The following function is responsible for the set a timer with

specific time.

def set_timer():

 # Print a message asking the user how long he wants to set

the timer for.

 print("How long do you want me to set the timer for?")

 speak("How long do you want me to set the timer for?")

 # Get the user's input for the duration of the timer.

 duration = get_audio()

 # If the user did not provide any input, return.

 if duration == "None":

 return

 # Parse the user's input to extract the hours, minutes, and

seconds

 hours = 0

 minutes = 0

 seconds = 0

 matches = re.findall(r"\d+", duration)

 # If the user provided only one number, assume it is the

number of seconds

http://www.iusrj.org/

A. Adel. \ International Uni-Scientific Research Journal Vol.4 (2023) 61-67

www.iusrj.org

69

if len(matches) == 1:

 seconds = int(matches[0])

 # If the user provided two numbers, assume they are

minutes and seconds

 elif len(matches) == 2:

 minutes = int(matches[0])

 seconds = int(matches[1])

 # If the user provided three numbers, assume they are

hours, minutes, and seconds

 elif len(matches) == 3:

 hours = int(matches[0])

 minutes = int(matches[1])

 seconds = int(matches[2])

 # If the user provided more than three numbers or non-

numeric input, inform him that the input was invalid and exit

the function

 else:

 print("Sorry, I couldn't parse that duration. Please try

again.")

 speak("Sorry, I couldn't parse that duration. Please try

again.")

 return

 # Convert the hours, minutes, and seconds to a total

number of seconds

 total_seconds = hours * 3600 + minutes * 60 + seconds

 # If the total number of seconds is greater than 0, inform

the user of the timer duration and set a timer for that length

 if total_seconds > 0:

 print(f"OK, I will set the timer for {hours} hours,

{minutes} minutes, and {seconds} seconds.")

 speak(f"OK, I will set the timer for {hours} hours,

{minutes} minutes, and {seconds} seconds.")

 time.sleep(total_seconds)

 # When the timer goes off, inform the user and play an

alarm sound

 print(f"Time's up!")

 speak(f"Time's up!")

 # play an alarm sound file

 playsound.playsound('alarm.mp3')

 # If the total number of seconds is not greater than 0,

inform the user that the duration was not valid

 else:

 print("Sorry, that's not a valid duration.") speak("Sorry,

that's not a valid duration.")

➢ The following function is responsible for taking a note

and save it in a text file

def note():

 # Start recording audio from the microphone

 with sr.Microphone() as source:

 # speak a message asking the user to say their note.

 print("Say your note")

 speak("Say your note")

 # Record the audio for 10 seconds

 audio = r.record(source, duration=10)

 # Use Google's speech recognition API to transcribe

the audio into text

 note = r.recognize_google(audio)

 # Speak the transcribed note to the user and save it to

a file called "note.txt"

print("Your note is: " + note + "and it is saved

successfully")

 speak("Your note is: " + note + "and it is saved

successfully")

 with open("note.txt", "w") as f:

 f.write(note)

 print("Note saved to your notes")

 speak("Note saved to your notes")

The following function is responsible for the voice assistant,

which works using artificial intelligence (Ai)

def voice_assistant():

 """ * Runs thAe voice assistant.

 * Continually prompts the user for a question, and then

asks ChatGPT to answer it. """

 while True:

 # Setting up the OpenAI API key and initializing

chat_log to store conversation history

 openai.api_key = "sk-

cuaweU8k4At3ntlNnTpwT3BlbkFJHHAYHsdwr4BmENON

0RZZ"

 chat_log = []

 # Initializing speech recognizer instance

 with sr.Microphone() as source:

 # Asking the user for input by generating speech

using the speak() function

 print("What do you want to ask ChatGPT about?")

 speak("What do you want to ask ChatGPT about?")

 # Recording the user's input

 audio = r.listen(source)

 # Recognizing the audio input and storing the text in a

variable

 Target_question = r.recognize_google(audio)

 # Calling the get_audio() function to get the user's

input from microphone

 user_message = get_audio()

 # Generating speech to confirm the user's input

 print("Sure, I will search for \"" + Target_question +

"\".")

 speak("Sure, I will search for \"" + Target_question +

"\".")

 # If the user inputs "quit", break out of the loop

 if user_message.lower() == "quit":

 break

 else:

 # Storing the user's input in chat_log

 chat_log.append({"role": "user", "content":

user_message})

 response = openai.ChatCompletion.create(

 model = "gpt-3.5-turbo",

 # Passing the chat history to OpenAI's API for

generating a response

 messages = chat_log

)

 # Extracting the generated response from the API's

response

 assistant_response =

response['choices'][0]['message']['content']

 # Printing the generated response

http://www.iusrj.org/

A. Adel. \ International Uni-Scientific Research Journal Vol.4 (2023) 61-67

www.iusrj.org

70

print("ChatGPT: ",

assistant_response.strip("\n").strip())

 # Generating speech for the generated response

 speak("ChatGPT: ",

assistant_response.strip("\n").strip())

 # Storing the generated response in chat_log.

 chat_log.append({"role": "assistant", "content":

assistant_response.strip("\n").strip()})

 print(response)

The following function is responsible for translating from

English into Arabic .

def translate():

 translator = googletrans.Translator()

 speak("Say something in English")

 with sr.Microphone() as source:

 audio = r.listen(source)

 text = r.recognize_google(audio)

 print(f"You said: {text}")

 # Set the target language

 target_language = "arabic" # or extract the target

language from the text using string manipulation

 # Translate the text

 translated_text = translator.translate(text,

dest=target_language).text

 speak(f"Translated to {target_language}:

{translated_text}")

 print(translated_text)

The following function is responsible for downloading videos

from youtube in specific quality

def Download():

 link = input("Put your YouTube link here! URL: ")

 youtube_object = YouTube(link)

 streams = youtube_object.streams.filter(progressive=True)

 print("Available resolutions:")

 speak("Available resolutions:")

 # Loop through each stream and print its resolution and

index

 for i, stream in enumerate(streams):

 print(f"{i}: {stream.resolution}")

 speak(f"{i}: {stream.resolution}")

 # prompt user to select a resolution

 while True:

 print("please say the number corresponding to the

resolution that you want")

 speak("please say the number corresponding to the

resolution that you want")

 selection = get_audio()

 # If the input is not None and is a digit

 if selection is not None and selection.isdigit():

 # Convert the selection to an integer

 selection = int(selection)

 # If the selection is within the range of available

streams, break the loop

 if selection >= 0 and selection < len(streams):

 break

selected_stream = streams[selection]

 file_path = selected_stream.download()

 print(f"Your video was downloaded to {file_path}.")

 print("This download has completed! Yeeeah!")

 speak("This download has completed! Yeeeah!")

➢ The following function is responsible for giving a full

weather report in specific area.

def get_weather():

 with sr.Microphone() as source:

 speak("Which location?")

 audio = r.listen(source)

 location = r.recognize_google(audio)

 # Print the location

 print("Location: " + location)

 # Get the weather manager

 mgr = owm.weather_manager()

 # Get the observation for the location

 observation = mgr.weather_at_place(location)

 # Get the weather details from the observation

 w = observation.weather

 # Get temperature, wind speed, and humidity

 temperature = w.temperature('celsius')['temp']

 # Convert wind speed from m/s to km/h

 wind_speed_kmh=str(round((w.wind()['speed']) * 3.6, 2))

 # Get the humidity percentage

 humidity = w.humidity

 # Create a report string with the weather details

 weather_report = f"The temperature in {location} is

{temperature} degrees Celsius. The wind speed is

{wind_speed_kmh} kilometers per hour. The humidity is

{humidity} percent."

 # Print the weather report and speak it

 print(weather_report)

 speak(weather_report)

➢ The following function is used to convert speech to text

and save it in a PDF files.

def pdf():

 with sr.Microphone() as source:

 print("Say the content of the pdf...")

 speak("Say the content of the pdf...")

 audio = r.listen(source)

 # Convert speech to text

 text = r.recognize_google(audio)

 print(f"You said: {text}")

 speak(f"You said: {text}")

Define the data for each page

 data = [text]

 # Create a PDF with multiple pages

 pdf_filename = "multi_page.pdf"

 doc = SimpleDocTemplate(pdf_filename, pagesize=letter)

 for page_content in data:

 # Initialize the story for this page

 story = []

 # Split the content into paragraphs based on ". " line

breaks

 paragraphs = page_content.split(". ")

 for paragraph in paragraphs:

 # Add the paragraph to the story

 p = Paragraph(paragraph)

http://www.iusrj.org/

A. Adel. \ International Uni-Scientific Research Journal Vol.4 (2023) 61-67

www.iusrj.org

71

story.append(p)

 # Add a spacer after each paragraph

 story.append(Spacer(1, 0.2 * inch))

 # Add the story to the document

 doc.build(story)

 print("PDF saved successfully")

 speak("PDF saved successfully")

Face recognition

Facial recognition technology is utilized to identify individuals

who have been added to a smart robot designed for the visually

impaired, providing a significant advantage in terms of

security by enabling the detection of specific users. This

feature facilitates the identification of potential theft cases and

promptly alerts relevant authorities. The integration of facial

recognition technology in smart robots for the blind marks a

notable advancement in security and has the potential to

significantly enhance the protection of valuable resources.

The libraries used :

import face_recognition # provides facial recognition

capabilities through ML algorithms.

import cv2 # used for real-time image and

video processing, object detection, and other computer vision

tasks.

import numpy as np # a library for scientific computing

in Python that provides support for multi-dimensional arrays

and mathematical operations on them

import pyttsx3 # a library for text-to-speech

conversion, which means it can convert written text into

spoken words

import os # a built-in Python library for

interacting with the operating system, which can be used to

access files and directories, manipulate environment

variables, and more

The complete code :

engine = pyttsx3.init()

Get a reference to webcam #0 (the default one)

video_capture = cv2.VideoCapture(0)

filenames = []

with open("filenames.txt", "r") as file:

Read the array from the text file, using the

`numpy.loadtxt()` function.

 known_face_names = np.loadtxt(file, delimiter=",",

dtype=str)

with open("all.txt", "r") as file:

Read the array from the text file, using the

`numpy.loadtxt()` function.

 content = np.loadtxt(file, delimiter=",")

 known_face_encodings = content

Initializing variables to store face locations, encodings and

names for each frame.

face_locations = []

face_encodings = []

face_names = []

frame_count = 0

prev_num_faces = 0

while True:

 # Grab a single frame of video

 ret, frame = video_capture.read()

 if frame_count % 25 == 0: # check for matches and speak

the name every 30 frames

 # Resize frame of video to 1/5 size for faster face

recognition processing

 small_frame = cv2.resize(frame, (0, 0), fx=0.2, fy=0.2)

 # Convert the image from BGR color (which OpenCV

uses) to RGB color (which face_recognition uses)

 rgb_small_frame = small_frame[:, :, ::-1]

 # Find all the faces and face encodings in the current

frame of video

 # Number_of_times_to_upsample parameter specifies

how many times to upsample the image.

 face_locations =

face_recognition.face_locations(rgb_small_frame,

number_of_times_to_upsample=3)

 face_encodings =

face_recognition.face_encodings(rgb_small_frame,

face_locations, num_jitters=5)

 # Initialize an empty list for storing the names of

recognized faces

 face_names = []

 # Comparing the face encodings of the reduced frame

with the known face encodings

 for face_encoding in face_encodings:

 # See if the face is a match for the known face(s)

 matches =

face_recognition.compare_faces(known_face_encodings,

face_encoding)

 name = "Unknown"

 # Calculating the face distances between the

encodings to identify the best match.

 face_distances =

face_recognition.face_distance(known_face_encodings,

face_encoding)

 # Find the index of the closest match.

 best_match_index = np.argmin(face_distances)

 # Checks if the closest match is below the tolerance

level.

 if matches[best_match_index]:

 # If it is, then the name associated with that

known_face_encoding is assigned to the detected face.

 name = known_face_names[best_match_index]

 # Adds the assigned name to the list of face_names.

 face_names.append(name)

 # Counts the number of faces detected in the current

frame.

 num_faces = len(face_locations)

 # checks if the number of detected faces has changed

since the last frame.

 if num_faces != prev_num_faces:

 names_str = ", ".join(face_names)

 # If it has, then it speaks out the number of persons

detected along with their names.

 engine.say(f"{num_faces} persons detected:

{names_str}")

 engine.runAndWait()

http://www.iusrj.org/

A. Adel. \ International Uni-Scientific Research Journal Vol.4 (2023) 61-67

www.iusrj.org

72

updates the prev_num_faces variable with the current

number of detected faces so that it can be used in the next

frame.

 prev_num_faces = num_faces

 frame_count += 1

 # iterate through each face location and name returned by

the model

 for (top, right, bottom, left), name in zip(face_locations,

face_names):

 # scale up the coordinates of the face locations to match

the original frame size

 top *= 0

 right *= 5

 bottom *= 5

 left *= 4

 # Draw a box around the face with White color and

thickness of 2

 cv2.rectangle(frame, (left, top), (right, bottom), (255,

230, 249), 2)

 # Draw a label with a name below the face with Black

color

 cv2.rectangle(frame, (left, bottom - 35), (right, bottom),

(255, 230, 249), cv2.FILLED)

 # specify font type and size for the label text

 font = cv2.FONT_HERSHEY_DUPLEX

 # add person's name as text to the labeled rectangle with

white color and thickness of 1

 cv2.putText(frame, name, (left + 5, bottom - 6), font,

1.25, (0, 0, 0), 1)

 # Display the resulting image

 cv2.imshow('Video', frame)

 # Hit 'q' on the keyboard to quit!

 if cv2.waitKey(1) & 0xFF == ord('q'):

 break

video_capture.release()

cv2.destroyAllWindows()

The following images are the output of the Face recognition

code:

This part displays the output of the code as it appears in Fig

.6

Fig.6.

3D Design

• Blender is a powerful and versatile 3D modeling

software that can be used for a wide range of projects.

Here are some of the reasons why you might want to

use Blender:

1. It's free: Blender is open-source software, which

means it's free to download and use.

2. Cross-platform: Blender works on Windows,

Mac, and Linux, so you can use it regardless of

your operating system.

3. 3D modeling: Blender has robust tools for creating

3D models, including sculpting, texturing, rigging,

and animation.

4. Simulation: Blender has features for simulating

things like fluid dynamics, cloth, and particle

systems, making it a great tool for visual effects

work.

5. Python scripting: Blender has an extensive Python

API, which allows you to automate tasks and

customize the software to suit your needs.

• Overall, Blender is a great choice for anyone looking to

get into 3D modeling, animation, or game development.

• Printing period, number of pieces, materials used, and

type of printing:

o Number of hours: approximately 180 hours

o Number of printed pieces: 23 pieces

o Raw materials: PLA+ & TPU

o The automatic printer: prusa i3 mk3s

o Print Type: Fused Deposition Modelin (FDM)

Below are pictures from within the program that show the

shape of the design :

In this part, we clarify the shape of the design as in Fig .7.

and Fig.8, this is the design shown on the Blender program,

and after that there the images in Fig 9. pictures showing the

stages of printing the design in 3D printing, and in Fig .10 a

picture after the completion of printing and installing the

design without components.

http://www.iusrj.org/

A. Adel. \ International Uni-Scientific Research Journal Vol.4 (2023) 61-67

www.iusrj.org

73

Conclusion

The development of a smart robot for blind people is a

significant step forward in creating an integrated and

independent living experience. With the increasing challenge

of navigating around unfamiliar spaces, it is essential to have

a solution that can address the challenges of mobility and

orientation faced by the visually impaired. The smart robot

application provides a comprehensive solution by integrating

and controlling multiple smart devices in a seamless and

intuitive manner, to help blind people navigate around their

homes and surroundings.

The smart robot application will improve the overall efficiency

and convenience of living for the visually impaired by

coordinating various devices to create desired environments,

such as turning on the lights, adjusting the temperature, and

setting the security system when the homeowner arrives home.

The application will also optimize the performance of the

various devices to ensure that they are working together

optimally and providing maximum assistance to the visually

impaired.

Additionally, the smart robot for blind people will be equipped

with advanced sensors and navigation systems to help them

move around the house without any assistance. It will use

machine learning algorithms to understand the layout of the

house and the location of different devices, to provide accurate

directions to the user and prevent collisions. Through voice

commands or touch screen, the robot will interact with the user

to make sure they are aware of their surroundings and

providing valuable assistance where necessary.

Overall, the smart robot for blind people will enhance the

quality of life and independence of visually impaired

individuals, making it easier for them to navigate and perform

daily tasks with ease and greater confidence.

Furthermore, the smart robot application will provide a simple

and user-friendly interface that allows homeowners to control

all their smart devices from a single, unified view. The

application will also be compatible with a variety of smart

devices and platforms, making it easier for homeowners to

adopt and integrate it into their existing smart home setup.

Furthermore, by offering a platform that homeowners, device

makers, and service providers can quickly embrace, the smart

robot application has the potential to revolutionize the smart

home sector. As a result, the market for smart homes may

experience increased innovation and growth, opening up new

chances for firms and entrepreneurs to introduce innovative

goods and services.

Additionally, the smart robot application has the potential to

make smart homes more accessible to a wider range of

consumers, including those with disabilities, elderly

individuals, and others who may face challenges in controlling

and managing their smart devices. The application's user-

friendly interface and voice control capabilities can make it

http://www.iusrj.org/

A. Adel. \ International Uni-Scientific Research Journal Vol.4 (2023) 61-67

www.iusrj.org

74

easier for these individuals to control and monitor their smart

home, improving their quality of life and independence.

The smart robot application for a smart home will play a

critical role in creating an efficient and convenient living

experience for homeowners. With its integrated and user-

friendly approach, the smart robot application is poised to

become the next generation of smart home solutions, providing

homeowners with the peace of mind and comfort they deserve.

We worked on Python version 3.9.16 for several reasons. The

first reason is that this version is the most stable version.

Secondly, all the libraries used in the codes are compatible

with it.

We used the Dell G15 5511 gaming to produce a training file

by training 120,000 images over 21 hours using the device

specifications: CPU I5 11260H, GPU RTX 3050 ti, RAM

16GB.

Creating the smart robot 3D print design, took 27 days, and to

print 3D printing, it took 10 days.

In conclusion, the smart robot application for a smart home is

not only a solution to the current challenges faced by

homeowners, but it also represents a new opportunity for

businesses and entrepreneurs to innovate and create new

products and services. With its potential to revolutionize the

smart home industry and make smart homes more accessible

to a wider range of consumers, the smart robot application has

a bright future ahead.

References

[1] International Journal of Engineering Research &

Technology (IJERT) ISSN: 2278-0181 Published by,

www.ijert.org ICACT - 2016 Conference

Proceedings Special Issue - 2016.

[2] Ultrasonic Blind Stick for Completely Blind People

to Avoid Any Kind of Obstacles Arnesh Sen Kaustav

Sen Jayoti Das Jadavpur University: Dept. of Physics,

Kolkata, India.

[3] PAPER • OPEN ACCESS Raspberry PI Based Smart

Walking Stick to cite this article: M. Ganesan et al

2020 IOP Conf. Ser.: Mater. Sci. Eng. 981 042090.

[4] Yoann Dieudonné, Shlomi Dolev, Franck Petit,

Michael Segal. Deaf, Dumb, and Chatting Robots,

Enabling Distributed Computation and Fault-

Tolerance Among Stigmergic Robots. [Research

Report] 2009, pp.15.

[5] International Journal of Computer Trends and

Technology Volume 68 Issue 3, 13 15, March 2020

ISSN: 2231-2803 /

https://doi.org/10.14445/22312803/IJCTT-

V68I3P103 2020 Seventh Sense Research Group.

[6] Volume 5, Issue 4, April – 2020 International Journal

of Innovative Science and Research Technology

ISSN No:-2456-2165.

[7] Benachir B. Nouhaila ,Adekunle A.

Adepoju(2022),Application of Aloe Vera-derived

Plant-based Cell in Powering Wireless IoT devices in

a Smart Greenhouse. IUSRJ International Uni-

Scientific Research Journal (3)(19),126-132.

https://doi.org/10.59271/s44768.022.2010.19

[8] Raspberry pi 4:

https://static.raspberrypi.org/files/product-

briefs/200521+Raspberry+Pi+4+Product+Brief.pdf.

[9] Raspberry Pi Camera v2:

https://www.farnell.com/datasheets/2056179.pdf?_ga=1.1525

77328.880870297.1479740269

[10] Touch screen display:

https://www.openhacks.com/uploadsproductos/hdmi_interfac

e_5_inch_800x480_tft_display_-_elecrow.pdf.

[11] Power Supply:

 https://static.raspberrypi.org/files/product-briefs/USB-C-

Product-Brief.pdf.

[12] PHOTOSENSITIVE RESISTANCE SENSOR:

https://hobbycomponents.com/sensors/832-

photosensitive-resistance-sensor-module.

[13] Water sensor:

https://curtocircuito.com.br/datasheet/sensor/nivel_d

e_agua_analogico.pdf.

[14] Motors:

https://media.digikey.com/pdf/Data%20Sheets/Adaf

ruit%20PDFs/3777_Web.pdf.

[15] Motor Driver L298N:

http://www.handsontec.com/dataspecs/L298N%20

Motor%20Driver.pdf.

[16] Speaker:

https://www.electroncomponents.com/4-inch-speaker-4-ohm-

5watts.

[17] Ultrasonic:

https://cdn.sparkfun.com/datasheets/Sensors/Proximity/HCS

R04.pdf.

[18] Buzzer:

http://electroniccomponentsindia.blogspot.com/2014/09/buzz

ers.html.

[19] Esp32:

https://www.espressif.com/sites/default/files/documentation/e

sp32_datasheet_en.pdf

[20] GPU:

https://developer.nvidia.com/cuda-gpus

[21] Flutter

• https://www.javatpoint.com/flutter

• https://www.fullstacklabs.co/blog/introduction

-to-flutter

• https://www.tutorialspoint.com/flutter/flutter_i

ntroduction.htm

• https://litslink.com/blog/why-should-you-

build-your-next-app-with flutter

• https://www.zrix.com/blog/flutter-mobile-

application-development

• https://digitalskynet.com/blog/Ionic-vs-Flutter-

vs-React-Native

[22] Python:

• https://www.javatpoint.com/python-tutorial

• https://techvidvan.com/tutorials/python-

advantages-and-disadvantages/

[23] Python GUI:

http://www.iusrj.org/
https://developer.nvidia.com/cuda-gpus
https://litslink.com/blog/why-should-you-build-your-next-app-with
https://litslink.com/blog/why-should-you-build-your-next-app-with
https://www.zrix.com/blog/flutter-mobile-application-development
https://www.zrix.com/blog/flutter-mobile-application-development

A. Adel. \ International Uni-Scientific Research Journal Vol.4 (2023) 61-67

www.iusrj.org

75

• https://www.gartner.com/en/information-

technology/glossary/gui-graphical-user-

interface

• https://www.activestate.com/blog/top-10-

python-gui-frameworks-compared/

[24] OCR:

• https://aws.amazon.com/what-

is/ocr/?nc1=h_ls

• https://www.docacquire.com/resources/blog/

what-is-ocr/

• https://www.geeksforgeeks.org/advantages-

and-disadvantages-of-optical-character-

reader-ocr/

• https://www.docdigitizer.com/blog/what-is-

ocr/

[25] Raspberry Pi OS:

• https://www.tutorialspoint.com/raspberry_pi/r

aspberry_pi_quick_guide.htm

• https://picockpit.com/raspberry-pi/raspberry-

pi-os-overview/

• https://linuxhint.com/what-is-raspberry-pi/

• https://robu.in/5-pros-and-5-cons-of-

raspberry-pi/

• https://raspberrytips.com/raspberry-pi-pros-

and-cons/

• https://www.educba.com/uses-of-raspberry-

pi/

• https://www.oreilly.com/library/view/raspberr

y-pi-amazing/9781787128491/ch24s06.html

[26] Speech-to-text:

• https://aws.amazon.com/what-is/speech-to-

text/

• https://www.amberscript.com/en/blog/how-

speech-to-text-software-works/#one

• https://itchronicles.com/speech-to-text/

• https://www.rfwireless-

world.com/Terminology/Advantages-and-

Disadvantages-of-Text-to-Speech-

Conversion.html

• https://studylib.net/doc/7569205/advantages-

and-disadvantages-of-voice-recognition---pac-

itgs

• https://itchronicles.com/speech-to-text/

• https://leaddesk.com/blog/speech-to-text-

guide-for-contact-centers/.

[27] Voice Assistance:

• https://www.santander.com/en/stories/everything-you-

need-to-know-about-voice-assistants

• https://alan.app/blog/voiceassistant-2/

• https://www.zdnet.com/home-and-office/smart-

home/12-smart-home-devices-that-make-great-gifts-in-

2022/

• https://www.miquido.com/blog/what-are-voice-

assistants/

• https://blogs.oracle.com/marketingcloud/post/advantage

s-and-disadvantages-of-voice-assistants-for-marketers

• https://www.techwalla.com/articles/the-disadvantages-

of-voice-recognition-software

• https://www.techulator.com/resources/18784-the-12-

advantages-and-disadvantages-of-voice-user-interface

• https://www.workstatus.io/blog/the-pros-and-cons-of-

voice-assistants-in-the-workplace/

[28] Flask:

• https://www.tutorialspoint.com/flask/flask_tutorial.pdf

• https://www.analyticsvidhya.com/blog/2021/10/easy-

introduction-to-flask-framework-for-beginners/

[29] AI, ML, and DL:

• http://beamandrew.github.io/deeplearning/201

7/02/23/deep_learning_101_part1.html

• https://towardsdatascience.com/what-are-the-

types-of-machine-learning-e2b9e5d1756f

• https://codebots.com/artificial-intelligence/the-

3-types-of-ai-is-the-third-even-possible

• https://www.datasciencecentral.com/ai-ml-or-

dl-learn-what-it-means\

• https://hypersense.subex.com/blog/ai-vs-ml-

vs-dl-whats-the-difference/

[30] object detection:

• https://d2l.ai/chapter_computer-

vision/bounding-box.html#bounding-box

• https://lilianweng.github.io/lil-

log/2017/10/29/object-recognition-for-

dummies-part-1.html

• 3-https://www.v7labs.com/blog/object-

detection-guide#h1

• https://medium.com/ml-research-lab/what-is-

object-detection-51f9d872ece7 is

[31] TensorFlow:

• https://www.guru99.com/what-is-

tensorflow.html#9

• https://www.javatpoint.com/advantage-and-

disadvantage-of-tensorflow

• https://www.techtarget.com/searchdatamanage

ment/definition/TensorFlow

• https://www.javatpoint.com/tensorflow

[32] Ubuntu on a Raspberry Pi:

• https://ubuntu.com/download/raspberry-pi

http://www.iusrj.org/
https://www.activestate.com/blog/top-10-python-gui-frameworks-compared/
https://www.activestate.com/blog/top-10-python-gui-frameworks-compared/
https://ubuntu.com/download/raspberry-pi

